Hittite Microwave

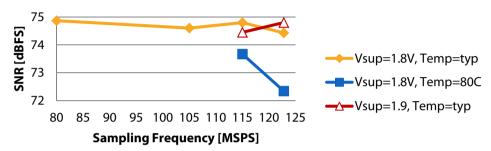
Use of HMCAD1520 Precision Mode from 105 to 122.8 MSPS

Operating HMCAD1520 in precision mode in the 105 to 122.8MSPS range

- ✓ The HMCAD1520 can be operated above the 105MSPS defined in the datasheet, given the following constrains
 - ✓ LVDS must be set to Dual 8 bit (Gives 2*8=16bit for each channel output. Data in the 14 MSB bits)
 - ✓ Analog supply voltage should be set to 1.9V±0.1V
 - ✓ For FS>115MSPS: Adc_current should be set to 90%. This is to avoid current saturation at the highest sample rate.
- ✓ This presentation will show the performance of HMCAD1520PM given these constraints

HMCAD1520-Precision Mode 105 to 122.8 MSPS SNR, SNDR and SFDR at -1dBFS input signal level

Measurement setup


- ✓ Supply voltage: 1.8V and 1.9V
- ✓ Temperature: 25°C and 80°C
- ✓ LVDS: Dual 8-bit1.5mA RSDS Mode
- ✓ ADC_curr register settings
 - √ 80-115MSPS: Nominal
 - √ 122.8MSPS: Nominal-10% (90%)
- ✓ Input signal: -1dBFS 70MHz sinewave

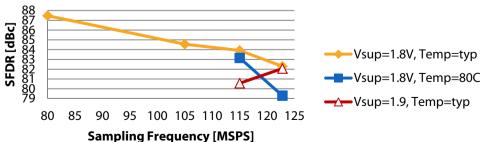
Measurement conclusions

- ✓ In the 80-115MSPS range the performance is:
 - ✓ Typical conditions:
 - ✓ SNR>74dBFS, SNDR>73dBFS, SFDR>80dBc
 - ✓ High temperature
 - ✓ SNR>73dBFS, SNDR>72dBFS, SFDR>80dBc
- ✓ In the 115-122.8MSPS range the performance is:
 - ✓ Typical conditions:
 - ✓ SNR>74dBFS, SNDR>73dBFS, SFDR>80dBc
 - ✓ High temperature
 - ✓ SNR>72dBFS, SNDR>70dBFS, SFDR>79dBc ∰ ₩

SNR vs Sample rate

Fin=70MHz, Ain=-1dBFS

SNDR vs Sample rate

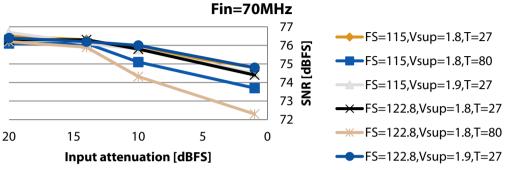

Fin=70MHz, Ain=-1dBFS

Sampling Frequency [MSPS]

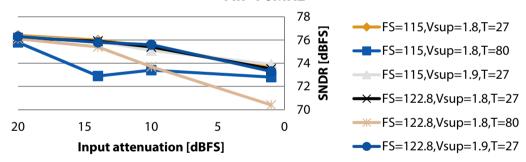
SFDR vs Sample rate

Fin=70MHz, Ain=-1dBFS

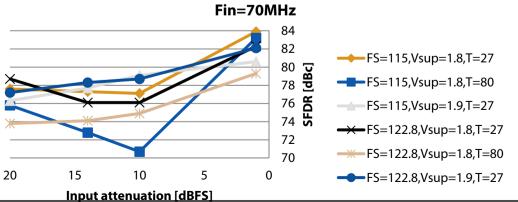
HMCAD1520-Precision Mode 105 to 122.8 MSPS SNR, SNDR and SFDR at -20 to -1dBFS input signal level


Measurement setup

- ✓ Supply voltage: 1.8V and 1.9V
- ✓ Temperature: 25°C and 80°C
- ✓ LVDS: Dual 8-bit1.5mA RSDS Mode
- ✓ ADC_curr register settings
 - ✓ 115MSPS: Nominal
 - ✓ 122.8MSPS: Nominal-10% (90%)
- ✓ Input signal: -1dBFS 70MHz sinewave

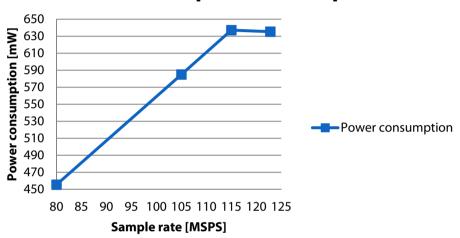

Measurement conclusions

- ✓ SNR and SNDR dominated by -1dBFS with results as gicen in previons slide
- When input signal decrease, SNR and SNDR will slightly improve
- ✓ SFDR is >75dBc in the entire -20 to -1dBFS range given typical temperature
- ✓ At high temperature and -20 to -10 dFBS input signal, the SFDR is between 70-75dBc


SNR vs Signal attenuation

SNDR vs Signal attenuation Fin=70MHz

SFDR vs Signal attenuation

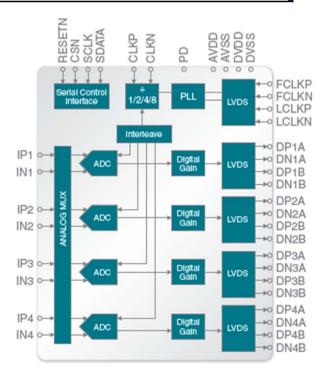


Measurement setup

- ✓ Supply voltage: 1.8V
- ✓ Temperature: 25°C
- ✓ LVDS: 1.5mA RSDS Mode
- ✓ ADC_curr register settings
 - √ 80-115MSPS: Nominal
 - ✓ 122.8MSPS: Nominal-10% (90%)
- ✓ Input signal: -1dBFS 70MHz sinewave on ch 1

Power consumption vs Sample rate

Measurement conclusions


- ✓ ADC power consumption scales linearly from 455 to 635mW over the 80 to 115MSPS range.
- ✓ At 122.8MSPS, the increase in current due to increased sample rate, is compensated by reducing the ADC current SPI setting. This eliminates current saturation in the analog circuitry

A/D Converter Solutions HMCAD1520 — Multi-Mode ADC w/ Integrated Cross Point Switches

Part Number	Function / Mode	Resolution (bits)	Sample Rate (MSPS)	Power Dissipation[2][3]	SNR (dBFS)	SFDR (dBc)	Package
HMCAD1520	High Speed Single Channel	12	640	490 mW	70	60 / 75 [1]	LP7DE
	High Speed Dual Channel	12	320	490 mW	70	60 / 78 [1]	
	High Speed Quad Channel	12	160	490 mW	70	60 / 78 [1]	
	Precision Quad Channel	14	105	603 mW	74	83	
	Precision Quad Channel	14	80	530 mW	75	85	

Features

- ✓ Multiple Modes
 - ✓ Single channel 12-bit up to 640 MSPS
 - ✓ Dual channel 12-bit up to 320 MSPS
 - ✓ Quad channel 12-bit up to 160 MSPS
 - ✓ Quad channel 14-bit up to 105 MSPS
- ✓ SPI Configurable Operational Modes
- ✓ SPI Configurable Number of Channels
- √ 1µs Switching Time Between Configurations
- ✓ Internal 1X to 8X Clock Divider
- ✓ LVDS output
 - ✓ Full robustness in RSDS (Low Current) Mode
- ✓ Ultra Low Power Dissipation
 - ✓ Dynamic power vs. sample rate scaling
- ✓ Coarse & Fine Gain Control
- √ 48 Pin QFN Package

6 November 9, 2011

^[1] Excluding Interleaving Spurs

^[2] Supply Voltage (Vdd) +1.8 Vdc Analog Supply (Avdd) and +1.8Vdc Digital Supply (Dvdd)

^[3] Output Supply Voltage (OVdd) +1.7 to +3.6 Vdc

Operating HMCAD1520 in precision mode in the 105 to 122.8MSPS range

- ✓ It The HMCAD1520 can be operated above the 105MSPS defined in the datasheet, given the following constrains
 - ✓ LVDS must be set to Dual 8 bit (Gives 2*8=16bit for each channel output. Data in the 14 MSB bits)
 - ✓ Analog supply voltage should be set to 1.9V±0.1V
 - ✓ For FS>115MSPS: Adc_current should be set to 90%. This is to avoid current saturation at the highest sample rate.
- ✓ Given these constraints, the performance of HMCAD1520 is comparable to the peroformance up to 105MSPS